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Chapter 10. Selection Rules 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(2005), Chap. 12, and Bunker and Jensen (1998), Chap. 14.  

10.1 Line Strength and Transition Intensity 
The selection rules that will be established in this chapter are those applicable to the so-
called electric dipole transitions. It is known from electrodynamics that the dominant 
mode of interaction between radiation and (electrically charged) matter happens through 
their respective electric field and electric dipole moment. Although electric multipole 
moments of higher orders can be defined (as well as magnetic dipole and multipole 
moments), and do exist in general, even a small dipole moment, if existent, will 
dominate. However, it is important to realize that not all charge distributions, and 
therefore molecules, will have a finite electric dipole. This can be asserted from the 
definition of the electric dipole moment operator 
 
 µ = CieRi

i
∑ ,  (10.1) 

 
where Cie  and Ri  are the charge and the space-fixed position (operator) of particle i , 
respectively. It should be apparent that if a molecule has a symmetrical arrangement of 
charges about the molecular origin, then its dipole moment cancels out. In cases such as 
these higher moments can be considered for possible transitions, although we will not 
carry such analyses in this chapter. Beside the electric dipole, other types of interactions 
can be of significant importance to explain well-known spectroscopic phenomena. A 
typical example of these is the interaction of the molecular magnetic dipole moment 
with an external magnetic field, which leads to the Zeeman effect. 
Electric dipole transitions will be caused by the presence of a perturbation Hamiltonian 
 
 ′Ĥ = −µ ⋅E  (10.2) 
 
due to the aforementioned electric dipole interaction with  the external electric field E  
(which is treated classically; i.e., it is not quantized). So, given initial and final molecular 
states i  and f , respectively, we are interested in evaluating the amplitude of the 
perturbation Hamiltonian matrix elements  
 

 

′H fi = f ′H i

= − f r r µ ⋅E t( ) i dτ∫
= −E t( ) ⋅ f r r µ i dτ∫
= −E t( )cos ϕ( ) ψ f r( )µψ i r( )dτ∫ ,

 (10.3) 
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where ϕ  is the angle made by the dipole moment (µ = µ ) with the external electric 
field. Equation (10.3) makes it clear that we will be concerned with the evaluation of the 
matrix elements of the electric dipole moment operator between the initial and final 
states. The vanishing integral rule will be used to determine whether a transition is 
possible or not.  

10.1.1 Einstein Coefficients, Line Strength, and Transition Intensity 
Let us consider a system composed of a large number of similar and non-interacting 
molecules, and denote by Ni  the density of molecules in the state i . We know from 
statistical mechanics that 
 

 Ni =
N
Q
gie

−Ei kT ,  (10.4) 

 
where N  is the total number of molecules, gi   and Ei  are respectively the degeneracy 
coefficient and the energy associated with state i , k  is the Boltzmann constant, and T  
is the temperature. The partition function Q  is defined with 
 
 Q = gie

−Ei kT

i
∑ .  (10.5) 

 
We also assume that the system is in thermodynamics equilibrium, such that  
 
 NiWi→ f = N fWf→i ,  (10.6) 
 
where Wi→ f  is the transition rate from state i  to j . We further introduce the Einstein 
coefficients Afi , Bfi , and Bif  for spontaneous emission, stimulated emission, and 

stimulated absorption (we assume that Ef > Ei ), respectively, along with ρ ν fi( )  the 
energy density of the radiation field at frequency Ef − Ei ≡ hν fi  to transform equation 
(10.6) to  
 
 NiBifρ ν fi( ) = N f Afi + Bfiρ ν fi( )⎡⎣ ⎤⎦,  (10.7) 

 
and 
 

 ρ ν fi( ) = Afi Bif
Ni

N f

Bif
Bfi

−1
.  (10.8) 

 
We know, however, that at equilibrium ρ ν fi( )  must equal the Planck function such that 
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 ρ ν fi( ) = Afi Bif
Ni

N f

Bif
Bfi

−1
=
8πhvfi

3

c3
ehν fi kT −1( )−1 .  (10.9) 

 
Inserting equation (10.4) in equation (10.9) we obtain that 
 

 Afi =
8πhvfi

3

c3
Bfi and giBif = gf Bfi .  (10.10) 

 
It is important to realize that although these relations were obtained at equilibrium, they 
truly only pertain to the system under consideration and can be used in any situation, 
even out of equilibrium. Let us now consider the rate of change in the energy density due 
to absorption as the radiation travels through the volume containing the molecules 
 

 

dρ ν fi( )
dt

= −hν fiρ ν fi( ) NiBif − N f Bfi( )

= −hν fiNiBifρ ν fi( ) 1− N f

Ni

Bfi

Bif

⎛

⎝⎜
⎞

⎠⎟
,
 (10.11) 

  
which at equilibrium becomes 
 

 
dρ ν fi( )
dt

= −hν fi
N
Q
giBif ρ ν fi( )e−Ei kT 1− e−hν fi kT( ),  (10.12) 

 
where equation (10.4) was again used. Introducing the intensity of the radiation field 
I ν( ) = cρ ν( )  we rewrite equation (10.12) as 
 

 
dI ν fi( )
cdt

= −
hν fi

c
N
Q
giBif e

−Ei kT 1− e−hν fi kT( ) I ν fi( ).  (10.13) 

 
But by definition, the change in the intensity as it travels through an infinitesimal length 
dl  is 
 
 dI ν( ) = −α ν( ) I ν( )dl,  (10.14) 
 
where α ν( )  is the absorption coefficient. Setting dl = cdt  we have 
 

 α ν fi( ) = hν fi

c
N
Q
giBif e

−Ei kT 1− e−hν fi kT( ),  (10.15) 
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and from equation (10.14)  
 

 α ν fi( ) = −
1
Δl

dI ν fi( )
I ν fi( )Δl∫ .  (10.16) 

 
Because the absorption coefficient is proportional to the density of molecules, dividing 
equation (10.16) by the molar concentration K  will yield a quantity that is more 
representative of the properties of the molecules. The molar absorption coefficient 
ε ν fi( )  is therefore 
 

 
ε ν fi( ) = − 1

KΔl
dI ν fi( )
I ν fi( )Δl∫

=
hν fi

c
N
QK

giBif e
−Ei kT 1− e−hν fi kT( ).

 (10.17) 

 
We see from equation (10.14) that we can assume that the intensity will be approximately 
constant in situations were 

 
α ν fi( )dl 1 , and the molar absorption coefficient will equal 

the relative intensity of the transition line per unit length   
 

 ε ν fi( ) = −
1

KΔl I ν fi( ) dI ν fi( ) =
Δl∫ −

1
KΔl

ΔI ν fi( )
I ν fi( ) .  (10.18) 

 
However, because the different molecules in the system will be moving at different 
velocities the Doppler effect will establish a molecular distribution as a function of the 
frequency ν fi  relative to the space-fixed coordinate system. We introduce the line profile 
φ ν( )  that will specify the number of molecule N ν( )  as a function of frequency with  
 
 N ν( ) = Nφ ν( )dv,  (10.19) 
 
and the condition 
 
 φ ν( )dν∫ ≡ 1.  (10.20) 
 
It would be preferable to do away with this velocity dependency if we want to be left 
with a quantity that is only a function of the molecular properties. Thus, the line intensity 
I f ← i( )  is defined as the frequency integration of the molar absorption coefficient, 
combined with a summation on all initial and final states  
 
 I f ← i( ) = ε ν fi( )dν fi∫

i, f
∑ ,  (10.21) 
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and since it is also usually the case that the width of the line profile is much smaller than 
the value of the frequency of the transition ν fi , we write 
 

 I f ← i( ) = hν fi

c
NA

Q
Bif e

−Ei kT 1− e−hν fi kT( )
i, f
∑ .  (10.22) 

 
where equation (10.20) was used and NA  is Avogadro’s number. The determination of 
the Einstein coefficient Bif  will complete the definition of the line intensity. To do so, we 
start with Fermi’s Golden Rule, which states that 
 
 

 
Wi→ f = 

−2 f ′Ĥ i
2
ρs ν fi( ).  (10.23) 

 
where ρs ν fi( )  is the density of states at the frequency ν fi . We already know that  
 
 ˆ ′H = −E t( )cos ϕ( )µ,  (10.24) 
 
and therefore 
 
 

 
Wi→ f = 

−2E2 t( )cos2 ϕ( ) f µ i 2 ρs ν fi( ).  (10.25) 
 
We further average over the ensemble of molecules 
 
 

 
Wi→ f = −2 E2 t( ) cos2 ϕ( ) f µ i 2 ρs ν fi( ),  (10.26) 

 
and since the molecules are expected to be randomly oriented then  
 

 cos2 ϕ( ) =
1
3
.  (10.27) 

 
Moreover, we set 
 
  E t( ) = E cos ωt( ),  (10.28) 
 
which implies that 
 

 
 
E2 t( ) = E 2

2
,  (10.29) 
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with the corresponding electromagnetic energy density  ε0E
2 , where ε0  is the permittivity 

of vacuum (from electromagnetism theory). We can therefore define the energy density 
of the radiation field at frequency ν fi  to be 
 
 

 
ρ ν fi( ) = ε0E

2ρs ν fi( ),  (10.30) 
 
which is the same quantity as was introduced in equation (10.7). Inserting equations 
(10.27), (10.29), and (10.30) in equation (10.26) we get 
 

 
 
Wi→ f =

f µ i 2

6ε0
2 ρ ν fi( ).  (10.31) 

 
However, since for a single molecule we must have 
 
 Wi→ f = Bifρ ν fi( ),  (10.32) 
 
then 
 

 
 
Bif =

f µ i 2

6ε0
2 .  (10.33) 

 
Inserting this result in equation (10.22) we finally obtain 
 

 
 
I f ← i( ) = πν fiNA

3ε0c
e−Ei kT

Q
1− e−hν fi kT( )S f ← i( ),  (10.34) 

 
with the line strength S f ← i( )  
 

 
S f ← i( ) = f µ i 2

i, f
∑

= f µA i
2

A=ξ ,η,ζ
∑

i, f
∑ ,

 (10.35) 

 
where µA  is the component of the electric dipole operator along one of the three space-
fixed axes (A = ξ, η, and ζ ). 

10.2 The Full Rotation Group 
The vanishing integral rule will be used to determine the possible transitions between two 
states, both generating different irreducible representation of the MS group. It should be 
clear, however, that the vanishing integral rule is not limited to the MS group, but to any 
group under which the Hamiltonian is invariant. For example, the CNP and CNPI groups 
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also satisfy this criterion. The full rotation group K , consisting of all possible rotations 
about a system of axes originating at the centre of mass of the molecule, is also such a 
symmetry group for the Hamiltonian. The rotation group is either labeled K spatial( )  or 
K mol( )  depending whether the system of axes is space- or molecule-fixed. In particular, 
an isolated molecule in free space (i.e., subjected to no external field) has K spatial( )  as 
a symmetry group. 

10.2.1 Irreducible Representations, Classes, and Characters 
If we are to make use of this group, we must then determine what are its characters under 
the different possible irreducible representations it generates. The following two facts 
will greatly simplify our task: 

a. The set of all possible rotations about the space-fixed system of axes can be 
completely described with the three Euler angles φ, θ, and χ  and their corresponding 
axes of rotation. 

b. Since all rotations are physically similar they all belong to the same class. 

We know that when an irreducible representation is degenerate the set of eigenfunctions 
that generate this representation must transform into one another. So, let us look at the set 
of wave functions Dmk

J( ) φ,θ,χ( )  introduced in equation (4.88) of Chapter 4 for the angular 

momentum operators Ĵ 2 , Ĵζ , and Ĵz . We know from the material covered in that chapter 
that 
 
 Dmk

J( ) φ,θ,χ( ) = Θmk
J( ) θ( )eimφeikχ . (10.36) 

 
with   m = −J,− J +1,…, J −1, J  and similarly for k . Therefore a rotation Cα

ζ( )  by an 
angle α  about the ζ -axis  will yield 
 

 
Cα

ζ( )Dmk
J( ) φ,θ,χ( ) = Θmk

J( ) θ( )eim φ+α( )eikχ

= Dmk
J( ) φ +α,θ,χ( ),

 (10.37) 

 
implying that the subset of functions Dmk

J( ) φ,θ,χ( )  for  m = −J,− J +1,…, J −1, J  
transform into one another for a fixed value of J . That is, they form a basis for that 
subspace of J . Moreover, because 
 
 Cα

ζ( )Dmk
J( ) φ,θ,χ( ) = eimαDmk

J( ) φ,θ,χ( ),  (10.38) 
 
then the character under a rotation is 
 

 χ J( ) Rα[ ] = eimα
m=− J

J

∑ ,  (10.39) 
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where Rα  can be any rotation by α  about any axis (remember that the possible rotations 
all belong to same class). Equation (10.39) can easily be transformed as follows 
 

 
χ J( ) Rα[ ] eiα −1( ) = ei J +1( )α − e− iJα

= 2ieiα 2 sin J +1 2( )α⎡⎣ ⎤⎦,
 (10.40) 

 
and 
 

 χ J( ) Rα[ ] = sin J +1 2( )α⎡⎣ ⎤⎦
sin α 2( ) .  (10.41) 

 
The totally symmetric irreducible representation Γ s( ) = Γ J =0( )  has a character of 1, as 
expected. 

10.2.2 Coupling of Angular Momenta 
When applying the vanishing integral rule, or whenever we combine two wave functions 
of the angular momenta (i.e., equation (10.36)), generating the irreducible 
representations, say, Γ J( )  and Γ ′J( ) , we will obtain a new reducible representation Γ  with 
 
 Γ = Γ J( ) ⊗Γ ′J( ).  (10.42) 
 
The character of this new representation is therefore 
 

 χΓ Rα[ ] = eimα
m=− J

J

∑ ⋅ ei ′m α

′m =− ′J

′J

∑ = ei ′m +m( )α

′m =− ′J

′J

∑
m=− J

J

∑ ,  (10.43) 

 
from equation (10.39). As always, we would like to express this reducible representation 
as 
 
 Γ = a ′′J Γ

′′J( )

′′J
∑ .  (10.44) 

 
To do so, we replace the double summation in equation (10.43) with another on two new 
indices ′′J  and ′′m  as follows  
 

 χΓ Rα[ ] = ei ′′m α

′′m =− ′′J

′′J

∑
′′J = J − ′J

J + ′J

∑ . (10.45) 

 
Careful comparison of equations (10.43) and (10.45) should convince the reader of their 
equality. We can therefore write the important result that 
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 Γ J( ) ⊗Γ ′J( ) = Γ ′′J( )

′′J = J − ′J

J + ′J

∑ .  (10.46) 

 
The only way that the totally symmetric representation can result from such a direct-
product is if J = ′J . 

10.3 Forbidden and Allowed Transitions 
The only knowledge that we still need to acquire before we can determine from the 
vanishing integral rule which transitions are allowed or forbidden concerns the symmetry 
properties of the electric dipole moment operator µ  under the MS and K spatial( )  
groups. This is the question we now consider. 

10.3.1 The Transformation Properties of the Electric Dipole Moment Operator 

The transformation of the µA operators (A = ξ, η, or ζ ) under the MS group is readily 
determined from equation (10.1). First, it should be clear that the components of the 
electric dipole will be unaffected by a permutation operation P , as this only exchanges 
the labels of like particles. If we denote by Γ µA( )  the representation generated by µA , 
then 
 
 χΓ µA( ) P[ ] = 1,  (10.47) 
 
for any P and A . On the other hand, because the position R  for all particles is inverted 
under a permutation-inversion operator P∗  then it must be that  
 
 χΓ µA( ) P∗⎡⎣ ⎤⎦ = χΓ µA( ) E∗⎡⎣ ⎤⎦ χ

Γ µA( ) P[ ] = −χΓ µA( ) P[ ] = −1.  (10.48) 
 
From this result we conclude that the irreducible representation Γ µA( )  of any 
component of the electric dipole operator is the one-dimensional irreducible 
representation that has the character +1 under a permutation operator and the character 
−1 under a permutation-inversion operator.   
The transformation of µA  under the K spatial( )  group is easily determined with the 
realization that  
 
 Γ µA( ) = Γ A( ),  (10.49) 
 
with A = ξ, η, or ζ , from the functional form of equation (10.1). Furthermore, we know 
that 
 
 Dm,0

J( ) φ,θ,χ( ) = YJ ,m φ,θ( ),  (10.50) 
 
where YJ ,m φ,θ( )  is a spherical harmonic, and in particular 
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Y1,0 φ,θ( )∝ζ
Y1,−1 φ,θ( ) −Y1,1 φ,θ( )∝η
Y1,−1 φ,θ( ) +Y1,1 φ,θ( )∝ξ.

 (10.51) 

  
It is apparent from this that the irreducible representation generated by any component of 
the electric dipole operator under the full rotation group K spatial( )  is Γ µA( ) = Γ 1( ) . 

10.3.2 Strictly forbidden Transitions 

If we were to use no approximations at all for the internal molecular Hamiltonian Ĥ int  
(i.e., use equation (1.126)) or the wave function Φint , then all of the angular momenta 
(orbital and spin) will be coupled into the total angular momentum F̂  (see equation 
(1.125). The irreducible representations of the K spatial( )  group will then be 

DmFkF
F( ) φ,θ,χ( )  (instead of Dmk

J( ) φ,θ,χ( ) ) and the vanishing integral rule corresponding to 
this group dictates that the electric dipole transitions (see equation (10.35)) allowed 
between two states Φint  and ′Φint  respectively generating the irreducible representations 
Γ F( )  and Γ ′F( )  are those for which (see equation (7.73)) 
 
 Γ F( )⎡⎣ ⎤⎦

∗
⊗ Γ ′F( ) = Γ F( ) ⊗Γ ′F( ) ⊃ Γ 1( ).  (10.52) 

  
Alternatively, we can write from equation (10.46) that transitions for which 
 
 ΔF = F − ′F = 0, ±1 F = ′F = 0  is forbidden( )  (10.53) 
 
are the only ones possible. In the same fashion, if the wave functions Φint  and ′Φint  
generate the irreducible representations Γ  and ′Γ , respectively, under the MS group, then 
the vanishing integral rule corresponding to this group dictates that the electric dipole 
transitions allowed between two states are those for which 
 
 Γ∗ ⊗ ′Γ ⊃ Γ µA( ). (10.54) 
 
Because of the transformation properties of the electric dipole operator (see the paragraph 
following equation (10.48)) equation (10.54) implies that ′Φint  and ′′Φint  must have 
opposing parities. More precisely, the only possible transitions are those for which 
 
 + ↔ − and − ↔ +.  (10.55) 
 
Any transitions that do not obey equations (10.53) and (10.55) are said to be strictly 
forbidden. It is possible that they may acquire some intensity through other types of 
perturbations (e.g., electric quadrupole, magnetic dipole, etc.), but they are the weakest of 
all transitions. 
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10.3.3 Selection Rules under the Born-Oppenheimer, Harmonic Oscillator, and 
Rigid Rotator Approximations 

Under the Born-Oppenheimer, harmonic oscillator, and rigid rotator approximations the 
nuclear spin does not enter in the equation for the approximate Hamiltonian. Because of 
this the irreducible representations of the K spatial( )  group will be Dmk

J( ) φ,θ,χ( )  and the 
vanishing integral rule dictates that the electric dipole transitions allowed between two 
states Φint  and ′Φint  respectively generating the irreducible representations Γ J( )  and Γ ′J( )  
are those for which 
 
 ΔJ = J − ′J = 0, ±1 J = ′J = 0  is forbidden( ).  (10.56) 
 
Furthermore, because the nuclear spins do not enter the expression for the electric dipole 
Hamiltonian, and the complete internal molecular state can be written as a product of a 
nuclear spin and rovibronic vectors 
 
 Φint = Φnspin Φrve

0 ,  (10.57) 
  
the transition moment integral under the MS group will yield (because of the vanishing 
integral rule) 
 

 

ITM,A = Φint µA ′Φint

= Φnspin ′Φnspin Φrve
0 µA ′Φrve

0

= δns, n ′s Φrve
0 µA ′Φrve

0 .

 (10.58) 

 
This implies that the nuclear spin states will not change for an electric dipole transition 
and 
 
 ΔI = 0.  (10.59) 
 
Similarly, because the electric dipole Hamiltonian does not involve the electronic spins 
we also have that 
 
 ΔS = 0. (10.60) 
 
From equation (10.58) we see that the allowed transitions are those for which 
 
 Γ rve

∗ ⊗ ′Γ rve ⊃ Γ µA( ). (10.61) 
 
Still under the same sets of approximations, the rovibronic states are further expressed as 
a product of electronic, vibrational, and rotational states 
 
 Φrve

0 = Φelec,n Φvib,nυ Φrot,nr ,  (10.62) 
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where labels n, υ, and r  stand for the particular electronic, vibrational, and rotational 
states realized. We know that under the Born-Oppenheimer approximation the electronic 
state affects the rotational state. It turns out, however, that this dependency is usually 
negligible, and we can ignore it for our analysis. We therefore write 
 
 Φrot,nr → Φrot,r ,  (10.63) 
  
i.e., we drop the electronic label for the rotational state. 
We now need to modify equation (10.58) for the transition moment integral if we are to 
make any progress in specifying selection rules. First, we use the Euler matrix to express 
the space-fixed electric dipole operator as a function of its molecule-fixed counterpart 
 
 µA = λαAµα

α = x,y,z
∑ .  (10.64) 

 
Because λαA  is only a function of the Euler angles, while µα  is solely a function of the 
vibronic (Cartesian) displacement coordinates Δα  (and the Cartesian equilibrium 
coordinates; see below) then the transition moment integral becomes 
 

 
ITM,A = Φvib,nυ Φelec,n µα ′Φelec, ′n ′Φvib, ′n ′υ ⋅ Φrot,r λαA ′Φrot, ′r

α = x,y,z
∑

= Φvib,nυ µα n, ′n( ) ′Φvib, ′n ′υ ⋅ Φrot,r λαA ′Φrot, ′r
α = x,y,z
∑ ,

 (10.65) 

 
where 
 
 µα n, ′n( ) = Φelec,n µα ′Φelec, ′n  (10.66) 
 
is the electronic transition moment function, which has a dependency on the normal 
coordinates. Since µα  is a linear function of the Cartesian displacement coordinates and 
it has the same mathematical form as Tα  (see equation (9.52)) and we find that 
 
 Γ µα( ) = Γ Tα( ),  (10.67) 
 
and when limiting oneself to vibronic transitions equation (10.61) becomes 
 
 Γve

∗ ⊗ ′Γve ⊃ Γ Tα( ). (10.68) 
 
We now simplify equation (10.66) with a Taylor expansion about the normal coordinates 
of one of the states (we keep only term of zero and first orders here) 
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µα n, ′n( )  µα

e n, ′n( ) + µα ,r n, ′n( )Qr
r
∑ ,  (10.69) 

 
where µα

e n, ′n( )  is a constant term that corresponds to the electric dipole moment in the 
equilibrium configuration and µα ,r n, ′n( )  is the partial derivative of µα  relative to Qr .   

10.3.3.1 Electronic Transitions 
For transitions between different electronic states, we focus our attention on the vibronic 
transition moment integral 
 
 Ivib,α = Φvib,nυ µα n, ′n( ) ′Φvib, ′n ′υ ,  (10.70) 
 
and determine the conditions needed to obtain transitions. It is readily established from 
the vanishing rule integral and equation (10.67) that the necessary condition is 
 
 Γvib

∗ ⊗ ′Γvib( )⊗ Γelec
∗ ⊗ ′Γelec( ) ⊃ Γ Tα( ).  (10.71) 

 
Transitions obeying this relation are called vibronically allowed. The strongest 
transitions are those that are further restricted to 
 
 Γelec

∗ ⊗ ′Γelec ⊃ Γ Tα( ),  (10.72) 
 
and 
 
 Γvib

∗ = ′Γvib .  (10.73) 
 
These transitions are called electronically allowed. The resulting lines are strong because 
of the presence of the constant (equilibrium) term in equation (10.69), which significantly 
contribute (and much more than the higher order terms in equation (10.69)) to  
 
 Φvib,nυ µα n, ′n( ) ′Φvib, ′n ′υ .  (10.74) 
 
In fact, when calculating the line strength of electronically allowed transitions one will 
often neglect the higher terms to get 
 
 Φvib,nυ µα n, ′n( ) ′Φvib, ′n ′υ

2
= µα

e n, ′n( ) 2 Φvib,nυ ′Φvib, ′n ′υ

2
.  (10.75) 

 
The factor Φvib,nυ ′Φvib, ′n ′υ

2
 is the so-called Franck-Condon factor, which gives the 

relative intensities of vibronic bands for a set of electronic transitions. 

10.3.3.2 Transitions within an Electronic State 
When the initial and final electronic states are the same then equation (10.65) leads to  
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 Γvib

∗ ⊗ ′Γvib( )⊗ Γ rot
∗ ⊗Γ λαA( )⊗ ′Γ rot( )⊃ Γ Tα( ).  (10.76) 

 
since the direct-product of a electronic representation with itself will generate the totally 
symmetric representation. If we further focus on the vibronic transition moment integral  
 
 Ivib,α = Φvib,nυ µα n,n( ) ′Φvib,n ′υ ,  (10.77) 
 
 then equation (10.71) becomes 
 
 Γvib

∗ ⊗ ′Γvib ⊃ Γ Tα( ).  (10.78) 
 
A vibrationally allowed transition will fulfill this requirement for at least one possible 
value of α  (i.e., x, y, or z ). Because the first term µα

e n,n( )  in equation (10.69) for the 
electronic transition moment function is a constant it will transform as the totally 
symmetric representation, and from equation (10.67) 
 
 Γ Tα( ) = Γ s( ).  (10.79) 
 
On the other hand, the second term µα ,r n,n( )Qr  in equation (10.69) has the symmetry of 
Qr , which implies that for transition to occur we must have 
 
 Γ Qr( ) = Γ Tα( ).  (10.80) 
 
Inserting equation (10.69) into equation (10.77) yields 
 
 Ivib,α = µα

e n,n( )δυ ′υ + µα ,r n,n( )
r
∑ Φvib,nυ Qr ′Φvib,n ′υ .  (10.81) 

 
Obviously, the first term on the left hand side does not correspond to a vibrational 
transition, as the initial and final states must be the same, but it will allow for pure 
rotational transitions within one vibrational state (see below). The second term, however, 
can bring vibrational transitions when 
 
 Φvib,nυ Qr ′Φvib,n ′υ ≠ 0.  (10.82) 
 
Since, from equation (4.27), a normal mode consists of a linear combination of the ladder 
operators R+  and R−  (and vice-versa), and then we have the following vibrational 
selection rule 
 
 Δυr = ±1,  (10.83) 
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(see also equations (4.31)) with υr  the vibrational quantum number associated to Qr , 
which must have the symmetry translation Tα , from equation (10.80). Such a normal 
mode is said to be infrared active as the associated transitions happen at infrared 
wavelengths. Other types of transitions, such as overtone transitions (from the 
vibrational ground state to one state r  with Δυr ≥ 2 ) and combination tones (from the 
vibrational ground state to more than one state r  with Δυr ≠ 0 ) are forbidden under our 
approximations. These transitions could arise from second and higher order terms in the 
Taylor expansion of equation (10.69). 
For example, we know for the previous chapter that for water the three possible normal 
modes have the 2A1⊕ B2  symmetry, and from Table 9-1 for the characters of the 
C2v M( )  group Tx  has symmetry A1  and Tz  has symmetry B2 . All three modes are thus 
infrared active, as they verify equation (10.80). This does not have to always be the case; 
some molecules will have normal modes that are not realized. 
Before we can state the selection rules for rotational transitions, we need to consider how 
the elements of the Euler matrix transform under the MS and K spatial( )  groups. 

1) Transformation of λαA  under the MS group. 
The components of the space- and molecule-fixed angular momentum are related through 
 
 ĴA = λαA Ĵα

α = x,y,z
∑ ,  (10.84) 

 
with A = ξ, η, and ζ . The space-fixed components ĴA  will remain unchanged under the 
elements of the MS group and they will therefore transform as the totally symmetric 
representation of the group. This is because these involve a summation (over the nuclei 
and electrons) of products of space-fixed coordinates and linear momenta. More 
precisely, these summations are unchanged by permutations (because the summations are 
over all particles) or by permutations-inversion (because both coordinates and momenta 
will change sign). This implies that the representations generated by λαA  and Ĵα  are 
related by  
 
 Γ λαA( )⊗Γ Ĵα( ) = Γ s( ),  (10.85) 

 
or 
 
 Γ λαA( ) = Γ Ĵα( ). (10.86) 
 
That is, the elements of the Euler matrix λαA  transform in the same way as the 

corresponding molecule-fixed component of the angular momentum Ĵα . Therefore, we 
define the following combinations of the elements λαA   
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T±1
1 λA( ) = −1

2
λxA ± iλyA( )

T0
1 λA( ) = λzA ,

 (10.87) 

 
respectively generate the representations (see equation (4.71)) 
 

 
Γ T±1

1( ) = Γ Ĵm
±( )

Γ T0
1( ) = Γ Ĵz( ).  (10.88) 

 
Moreover, under the MS group the rotational moment integral 
 
 Irot,A = J,k,m Tp

1 λA( ) ′J , ′k , ′m  (10.89) 
 
will generate the representations (see equation (10.65) and equation (10.102) below) 
 
 Γ rot,A = Γ km

J( )⎡⎣ ⎤⎦
∗
⊗ Γ Ĵm

±( )⊗Γ ′k ′m
′J( )  (10.90) 

 
for p = ±1  and 
 
 Γ rot,A = Γ km

J( )⎡⎣ ⎤⎦
∗
⊗ Γ Ĵz( )⊗Γ ′k ′m

′J( )  (10.91) 
 
for p = 0 . We therefore find the important result that  
 
 J,k,m Tp

1 λA( ) ′J , ′k , ′m = 0,  (10.92) 
 
unless 
 
 Δk = k − ′k = 0 or ±1,  (10.93) 
 
because of the respective effects of the Ĵz  and Jm

±  operators on the quantum number k . 
In other words, the value of p  specifies the value of Δk . 
 
2) Transformation of λαA  under the K spatial( )  group. 

Referring to equations (3.2), where the elements λαA  are defined, and equations (10.87)
we find that the quantities Tp

1 λA( )  have the following dependencies 
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T±1
1 λξ( )∝ cos θ( )cos φ( )e iχ − sin φ( )e± iχ

T0
1 λξ( )∝ sin θ( )cos φ( )

T±1
1 λη( )∝ cos θ( )sin φ( )e iχ − cos φ( )e± iχ

T0
1 λη( )∝ sin θ( )sin φ( )

T±1
1 λζ( )∝ sin θ( )e iχ

T0
1 λζ( )∝ cos θ( ).

 (10.94) 

 
It will be easy to see from a comparison with equations (4.86) and (4.88) that these 
functions all belong to the D 1( )  family. That is, the functions Tp

1 λA( )  transform as the 

D 1( )  irreducible representation under the K spatial( )  group (hence their superscript). As 
a result, the rotational moment integral 
 
 Irot,A = J,k,m Tp

1 λA( ) ′J , ′k , ′m  (10.95) 
 
will generate the representation 
 

 Γ rot,A = Γ J( )⎡⎣ ⎤⎦
∗
⊗ Γ 1( ) ⊗Γ ′J( ).  (10.96) 

 
We therefore find that  
 
 J,k,m Tp

1 λA( ) ′J , ′k , ′m = 0,  (10.97) 
 
unless   
 
 ΔJ = J − ′J = 0, ±1 J = ′J = 0  is forbidden( ),  (10.98) 
 
based on equations (10.46) and (10.96). Evidently, this is another statement of the more 
general derivation leading up to equation (10.56). Also equations (10.94) and (10.95) 
could be used to derive the Δk  rule of equation (10.93), as well as similar one for the 
quantum number m . That is, 
 
 Δm = m − ′m = 0 or ±1. (10.99) 
   
If we now define a new set of functions  
 

 
T±1
1 µ( ) = −1

2
µx ± iµy( )

T0
1 µ( ) = µz ,

 (10.100) 
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then we can transform equation (10.64) for the space-fixed electric dipole moment 
 
 µA = −1( )p Tp1 λA( )Tp1 µ( )

p=−1,0,1
∑ .  (10.101) 

 
Using equations (10.65), (10.87), (10.100), and (10.101) we write the transition moment 
integral as 
 
 ITM,A = −1( )Δk Φvib,nυ TΔk

1 µ( ) ′Φvib,n ′υ J,k,m TΔk
1 λA( ) ′J , ′k , ′m

Δk=−1,0,1
∑ ,  (10.102) 

 
where we set Φrot,r = J,k,m . The line strength of a transition can be evaluated by 
taking the square of the corresponding term in equation (10.102) and summing over the 
degeneracy of the states (see equation (10.35)). 
Equation (10.102) is perfectly suited to summarize the selection rules for rotational 
transitions of symmetric tops and linear molecules. In particular, we know from equation 
(10.81) that there will exist pure rotational transitions if for one value of α  
 
 Γ Tα( ) = Γ s( ).  (10.103) 
 
This rule actually applies to any type of rigid rotator. For example, methyl fluoride 
CH3F  (C3v M( ) , Table B.5 of Bunker and Jensen (2005)) has Γ Tz( ) = A1 , and will 

therefore show pure rotational lines, while H3
+  (D3h M( ) , Table B.8 of Bunker and 

Jensen, op. cit.) will not since Γ Tα( ) ≠ ′A1  for all α . But for all types of rotational 
transitions (i.e., pure or otherwise) equations (10.93), (10.98) and (10.102) give the 
following selection rules  
 

 ΔJ = J − ′J = 0, ±1 J = ′J = 0  is forbidden( )
Δk = k − ′k = 0 or ±1.

 (10.104) 

 
The transitions for which Δk = 0  form the parallel band, those for which Δk = ±1  form 
the perpendicular bands. The sets of spectral lines for which ΔJ = −1, 0 , and 1 are 
called P-branch, Q-branch, and R-branch, respectively; see Figure 10-1. 
It is important to realize that symmetric top rotators verify the pure rotational condition of 
equation (10.103) only for one value of α , namely α = z . This implies that we can only 
have Δk = 0  in equation (10.102). Pure rotational (electric dipole) transitions with 
Δk = ±1  are therefore forbidden for symmetric tops. Furthermore, because pure 
rotational transitions will not bring (by definition) any changes in the electronic and 
vibrational states, and that energy must be conserved before and after a transition, then 
transition with ΔJ = 0  are forbidden.     
In summary, for symmetric top pure rotational transitions are only allowed when 
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 ΔJ = ±1 and Δk = 0.  (10.105) 
  
For asymmetric tops, we need to consider the transformation properties of the 
Hamiltonian under the D2  molecular rotation group, shown in Table 10-1. 

Table 10-1 – The character table for the D2  molecular rotation group and the species of 

the asymmetric top vectors JKaKc
 in the group. 

D2 : E  Ra
π  Rb

π  Rc
π  KaKc   

A : 1  1  1  1  : ee   
Ba : 1  1  −1 −1 : eo  Ĵa  
Bb : 1  −1 1  −1 : oo  Ĵb  
Bc :  1  −1 −1 1  : oe  Ĵc  

 
We also recall from Chapter 3 that the asymmetric top Hamiltonian can be expressed as 
 
 Ĥ rot

0 = Ae Ĵa
2 + Be Ĵb

2 + Ce Ĵc
2 . (10.106) 

 
The fact the character of Ĵα  is ±1  for any α  under any element of the D2  group implies 
that the asymmetric top Hamiltonian is invariant under this group (since the Hamiltonian 
is proportional to Ĵα

2 ). That is, the D2  molecular group is a symmetry group for an 
asymmetric top molecule.  
The selection rules of the asymmetric top can be determined using  
 
 ITM,A = Φvib,nυ µα n,n( ) ′Φvib,n ′υ ⋅ JKa ,Kc

λαA ′J ′Ka , ′Kc
α = x,y,z
∑ ,  (10.107) 

 
with 
 
 

 
µα n,n( )  µα

e n,n( ) + µα ,r n,n( )Qr
r
∑ ,  (10.108) 

 
the fact that (as was shown earlier, and because of transformation properties of Ĵα  under 
D2 ) 
 
 Γ λαA( ) = Γ Ĵα( ) = Bα ,  (10.109) 
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Figure 10-1 – The one-dimensional vibrational υ1  absorption parallel band (Δk = 0 ) for 
CH3F . The sets of spectral lines of the left, centre, and right for each sub-bands are the 
P-branch (ΔJ = −1), Q-branch (ΔJ = 0 ), and R-branch (ΔJ = 1), respectively.  

and the asymmetric top symmetry rule enunciated in the previous chapter (also see 
Table 10-1) and repeated here for convenience  
The ‘ee’ functions will transform as the totally symmetric representation, the ‘eo’ 
functions as the representation having +1 for Ra

π  (and −1 for Rb
π  and Rc

π ), the ‘oe’ 
functions as the representation having +1 for Rc

π  (and −1 for Ra
π  and Rb

π ), and the ‘oo’ 
functions as the representation having +1 for Rb

π  (and −1 for Ra
π  and Rc

π ). 
 
The representation Γ rot,α  generated by JKa ,Kc

λαA ′J ′Ka , ′Kc
 will be 

 

 Γ rot,α = ΓKaKc

J( )⎡⎣ ⎤⎦
∗
⊗ Bα ⊗ Γ ′Ka ′Kc

′J( ) ,  (10.110) 
 
and this leads to the following selection rules 
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ΔKa = even ΔKc = odd if α = a
ΔKa = odd ΔKc = odd if α = b
ΔKa = odd ΔKc = even if α = c

 (10.111) 

 
with 
 
 ΔJ = J − ′J = 0, ±1 J = ′J = 0  is forbidden( ),  (10.112) 
 
as always. 
Finally, the rotational selections rules for spherical tops is simply given by  
 
 ΔJ = J − ′J = 0, ±1 J = ′J = 0  is forbidden( ).  (10.113) 
 
The energy of a spherical does not involve k , and the vanishing of the electric dipole 
moment in the electronic ground state implies that no transitions of this kind can take 
place. 

Figure 10-2 – The ortho and para rotational states and some of the allowed pure 
rotational transitions (denoted by arrows) for the vibrational ground and first excited 
states of water. This graph is a courtesy of M. Fich, University of Waterloo, and leader of 
the Canadian Herschel Space Observatory Consortium.  


